A NEW REACTION OF 1,2-0-ISOPROPYLIDENE-α-D-GLYCOFURANOSES : REARRANGEMENT INTO 1,2':2,1' DIANHYDRIDES

Paul Henri Amvam Zollo, Jean-René Pougny and Pierre Sinay Laboratoire de Biochimie Structurale, E.R.A. 739, U.E.R. de Sciences Fondamentales et Appliquées, 45045 Orléans Cédex, France

Summary: Treatment of various 1,2-0-isopropylidene-a-D-glycofuranoses with boron trifluoride etherate in dry benzene at room temperature affords 1,2-cis glycofuranose 1',2'-cis glycofuranose 1,2':2,1' dianhydrides in excellent yield.

D-fructose and its $(2\rightarrow1)$ linked polymers are well known to form bimolecular dianhydrides containing a central dioxane ring when acted upon by aqueous acids 1 . Although diketose dianhydrides are typical cases, other sugar dianhydrides have been reported 2 . Low yield is a common feature of these reactions, ranking thus dianhydrides among side products. We want to report in this letter a rearrangement of 1,2-0-isopropylidene- α -D-glycofuranoses producing a new class of dianhydrides in preparative yield.

2448 No. 26

Similarly, 3-0-benzyl-5-deoxy-1,2-0-isopropylidene- α -D-xylofuranose⁷ $\underline{2}$, $\{\alpha\}_D^{20}$ -56° (CHCl $_3$), was converted into dianhydride $\underline{6}$ (88%), $\{\alpha\}_D^{20}$ -18° (CHCl $_3$), n.m.r. (CCl $_4$): δ 4.95(1H,d,J $_1$,24Hz, H-1). Selective acetylation of $\underline{7}$ (acetic anhydride-pyridine),followed by benzoylation (benzoyl chloride-pyridine) provided the unsymetrical derivative $\underline{8}$, $\{\alpha\}_D^{20}$ + 30° (CHCl $_3$). N.m.r. analysis of $\underline{8}$ showed the expected differentiation of the proton signals of both rings. A variety of 1,2':2,1' glycofuranose dianhydrides (xylo and ribo configuration),with different protecting groups, have been obtained in the same way. The formation of these derivatives can be rationalized as shown in the following scheme:

Rearrangement into 1,2 epoxide has not been observed. Dreiding stereomodels show that only one such structure is sterically possible, namely α -D-xylofuranose α -D-xylofuranose 1,2':2,1' dianhydride. To our knowledge,(2,4,8,10)tetraoxatricyclo (7,3,0,0^{3,7})dodecane system has not previously been reported.

REFERENCES AND FOOTNOTES

- For a review of the D-fructose dianhydrides, see E.J.McDonald, <u>Adv.Carbohydr.Chem.</u>, <u>2</u>,265 (1946); see also H.W. Hilton, <u>Methods Carbohydr.Chem.</u>, II,199 (1963).
- R.W. Jeanloz, G.R. Barker and M.V. Lock, <u>Nature,167</u>,42 (1951);H.B. Wood,Jr., H.W.Diehl and H.G. Fletcher,Jr., <u>J.Am.Chem.Soc.</u>, <u>78</u>,4715 (1956); K. Larsson and O.Samuelson, <u>Acta Chem.Scand.</u>, <u>26</u>,837 (1972); A.F.Bochkov, I.V. Obruchnikov, V.N.Chernetsky and N.K.Kochetkov, <u>Carbohydr.Res.</u>, <u>36</u>,191 (1974); K.Larsson, <u>Carbohydr.Res.</u>,44,199 (1975); T.Fujiwara and K.Arai, Carbohydr.Res., 69,97 and 107 (1979).
- 3. Prepared by benzylation (DMF/NaH /benzyl bromide, lh at room temperature) of the known 4 1,2-0-isopropylidene- α -D-xylofuranose.
- 4. P.A. Levene and A.L. Raymond, J.Biol.Chem., 102, 317 (1933).
- 5. Satisfactory elemental analyses and i.r.and n.m.r. data have been obtained for all products.
- 6. H. Gillier et al., to be published.
- 7. Prepared by benzylation 3 of the known 8 5-deoxy-1,2-0-isopropylidene- α -D-xylofuranose.
- 8. P.A.J. Gorin, L. Hough and J.K.N. Jones, <u>J.Chem.Soc</u>., 2140 (1953).

(Received in UK 26 March 1979)